Mark Scheme 4726 June 2007

Mark Scheme

June 2007

4726

Allow $r^2 = 2 \sin^2 3\theta$ 1 Correct formula with correct r M1 Rewrite as $a + b\cos 6\theta$ M1 $a, b \neq 0$ Integrate their expression correctly A1 $\sqrt{\text{From } a + b\cos 6\theta}$ Get ½π A1 cao 2 **B**1 (i) Expand to $\sin 2x \cos \frac{1}{4}\pi + \cos 2x \sin \frac{1}{4}\pi$ Clearly replace $\cos^{1}/4\pi$, $\sin^{1}/4\pi$ to A.G. **B**1 Allow $1 - 2x^2/2$ Attempt to expand $\cos 2x$ M1 (ii) Allow $2x - 2x^{3}/3$ Attempt to expand $\sin 2x$ M1 Get $\sqrt[4]{2}\sqrt{2}$ (1 + 2x - 2x² - 4x³/3) Four correct unsimplified terms **A**1 in any order; allow bracket; AEEF SR Reasonable attempt at $f^{n}(0)$ for n = 0 to 3 M 1Attempt to replace their values in Maclaurin M1Get correct answer only **A**1 Express as $A/(x-1) + (Bx+C)/(x^2+9)$ 3 (i) M1Allow C=0 here Equate (x^2+9x) to $A(x^2+9) + (Bx+C)(x-1)$ $M1\sqrt{May}$ imply above line; on their P.F. Sub. for x or equate coeff. M1 Must lead to at least 3 coeff.; allow cover-up method for A cao from correct method Get A=1, B=0,C=9 **A**1 B1 $\sqrt{ }$ On their A (ii) $\operatorname{Get} A \ln(x-1)$ Get $C/3 \tan^{-1}(x/3)$ B1 $\sqrt{ }$ On their C; condone no constant; ignore any $B \neq 0$ 4 (i) Reasonable attempt at product rule M1Two terms seen Derive or quote diff. of $\cos^{-1}x$ M1Allow + Get $-x^2(1-x^2)^{-1/2} + (1-x^2)^{1/2} + (1-x^2)^{-1/2}$ Tidy to $2(1-x^2)^{1/2}$ **A**1 **A**1 cao On any $k\sqrt{1-x^2}$ Write down integral from (i) B1 (ii) Use limits correctly M1 In any reasonable integral Tidy to ½π **A**1 SR Reasonable sub. **B**1 Replace for new variable and attempt to integrate (ignore limits) M1Clearly get ½π **A**1

4726		Mark Scheme		June 2007
5	(i)	Attempt at parts on $\int 1 (\ln x)^n dx$ Get $x (\ln x)^n - \int^n (\ln x)^{n-1} dx$ Put in limits correctly in line above Clearly get A.G.	M1 A1 M1 A1	Two terms seen $ln e = 1$, $ln 1 = 0$ seen or implied
	(ii)	Attempt I_3 to I_2 as $I_3 = e - 3I_2$ Continue sequence in terms of In Attempt I_0 or I_1 Get $6 - 2e$	M1 A1 M1 A1	$I_2 = \text{e-}2I_1 \text{ and/or } I_1 = \text{e-}I_0$ ($I_0 = \text{e-}1, I_1 = 1$) cao
6	(i)	Area under graph (= $\int 1/x^2 dx$, 1 to $n+1$) < Sum of rectangles (from 1 to n)	B1	Sum (total) seen or implied eg diagram; accept areas (of rectangles)
		Area of each rectangle = Width x Height = $1 \times 1/x^2$	B1	Some evidence of area worked out – seen or implied
	(ii)	Indication of new set of rectangles Similarly, area under graph from 1 to <i>n</i> > sum of areas of rectangles from 2 to <i>n</i> Clear explanation of A.G.	B1	
			B1 B1	Sum (total) seen or implied Diagram; use of left-shift of previous areas
	(iii)	Show complete integrations of RHS, using correct, different limits Correct answer, using limits, to one	M1	Reasonable attempt at $\int x^{-2} dx$
		integral Add 1 to their second integral to get	A1	
		complete series Clearly arrive at A.G.	M1 A1	
	(iv)	Get one limit Get both 1 and 2	B1 B1	Quotable Quotable; limits only required

Mark Scheme

June 2007

4726

7 (i) Use correct definition of cosh or sinh x B1 Seen anywhere in (i) Attempt to mult. their cosh/sinh M1A1√ Correctly mult. out and tidy Accept e^{x-y} and e^{y-x} Clearly arrive at A.G. **A**1 (ii) Get cosh(x - y) = 1M1Get or imply (x - y) = 0 to A.G. A1 Use $\cosh^2 x = 9 \text{ or } \sinh^2 x = 8$ **B**1 Attempt to solve $\cosh x = 3 \pmod{-3}$ $x = \ln(3 + \sqrt{8})$ from formulae book M1or sinh $x = \pm \sqrt{8}$ (allow $+\sqrt{8}$ or $-\sqrt{8}$ only) or from basic cosh definition Get at least one x solution correct **A**1 x, y = $\ln(3 \pm 2\sqrt{2})$; AEEF Get both solutions correct, x and y **A**1 SR Attempt tanh = sinh/cosh**B**1 Get tanh $x = \pm \sqrt{8/3}$ (+ or -) M1Get at least one sol. correct A1 Get both solutions correct A1 SR Use exponential definition **B**1 Get quadratic in e^x or e^{2x} M1Solve for one correct *x* **A**1 Get both solutions, x and y A1 8 (i) $x_2 = 0.1890$ B1 B1 $\sqrt{1}$ From their x_1 (or any other correct) $x_3 = 0.2087$ B1 $\sqrt{}$ Get at least two others correct, $x_4 = 0.2050$ all to a minimum of 4 d.p. $x_5 = 0.2057$ $x_6 = 0.2055$ $x_7 (= x_8) = 0.2056$ (to x_7 minimum) $\alpha = 0.2056$ **B**1 cao; answer may be retrieved despite some errors $k/(2+x)^3$ Attempt to diff. f(x)M1 (ii) A1 $\sqrt{\frac{1}{1000}}$ Clearly seen, or explain $\frac{k}{(2+x)^3} \neq 0$ Use α to show f '(α) \neq 0 as $k \neq 0$; allow ± 0.1864 SR Translate $y=1/x^2$ M1State/show $y=1/x^2$ has no TP A1 (iii) $\delta_3 = -0.0037$ (allow -0.004) B1 $\sqrt{\text{Allow}} \pm, \text{ from their } x_4 \text{ and } x_3$ Develop from δ_{10} = f '(α) δ_9 etc. to get δ_i or quote $\delta_{10} = \delta_3 f'(\alpha)^7$ M1Or any δ_1 eg use $\delta_2 = x_{10} - x_9$ Use their δ_i and f '(α) M1Get 0.000000028 **A**1 Or answer that rounds to \pm 0.0000003

Mark Scheme

June 2007

4726

9 Quote x = aB1 (i) Attempt to divide out M1Allow M1 for y=x here; allow (x-a) + k/(x-a) seen or implied A1 Get y = x - a**A**1 Must be equations Attempt at quad. in x = 0(ii) M1 Use $b^2 - 4ac \ge 0$ for real xGet $y^2 + 4a^2 \ge 0$ M1 Allow > **A**1 State/show their quad. is always >0 **B**1 Allow \geq (iii) $B1\sqrt{}$ Two asymptotes from (i) (need not be labelled) **B**1 Both crossing points $B1\sqrt{}$ Approaches – correct shape SR Attempt diff. by quotient/product rule M1Get quadratic in x for dy/dx = 0and note $b^2 - 4ac < 0$ **A**1 Consider horizontal asymptotes B1 Fully justify answer **B**1

4726 Mark Scheme June 2007