Mark Scheme 4726 June 2007

1 Correct formula with correct r
Rewrite as $a+b \cos 6 \theta$
Integrate their expression correctly
Get $1 / 3 \pi$

2 (i) Expand to $\sin 2 x \cos ^{1} / 4 \pi+\cos 2 x \sin 1 / 4 \pi$
Clearly replace $\cos ^{1} 1 / 4 \pi, \sin ^{114} \pi$ to A.G.
(ii) Attempt to expand $\cos 2 x$

Attempt to expand $\sin 2 x$
Get $1 / 2 \sqrt{ } 2\left(1+2 x-2 x^{2}-4 x^{3} / 3\right)$

M1 Allow $r^{2}=2 \sin ^{2} 3 \theta$
M1 $a, b \neq 0$
A1 $\sqrt{ }$ From $a+b \cos 6 \theta$
A1 cao

B1
B1
M1 Allow $1-2 x^{2} / 2$
M1 Allow $2 x-2 x^{3} / 3$
A1 Four correct unsimplified terms in any order; allow bracket; AEEF
SR Reasonable attempt at $f^{n}(0)$ for $n=0$ to 3 M1
Attempt to replace their values in Maclaurin M1
Get correct answer only A1
M1 Allow $C=0$ here
M1 $\sqrt{ }$ May imply above line; on their P.F.
M1 Must lead to at least 3 coeff.; allow cover-up method for A
A1 cao from correct method
$B 1 \sqrt{ }$ On their A
B1 $\sqrt{ }$ On their C; condone no constant; ignore any $B \neq 0$

M1 Two terms seen
M1 Allow +
A1
A1 cao
B1 On any $k \sqrt{ }\left(1-x^{2}\right)$
M1 In any reasonable integral
A1
SR Reasonable sub.
B1
Replace for new variable and attempt to integrate (ignore limits) M1
Clearly get $1 / 2 \pi \quad$ A1

5 (i) Attempt at parts on $\int 1(\ln x)^{n} \mathrm{~d} x$ Get $\mathrm{x}(\ln \mathrm{x})^{\mathrm{n}}-\int^{\mathrm{n}}(\ln x)^{\mathrm{n}-1} \mathrm{dx}$
Put in limits correctly in line above Clearly get A.G.
(ii) Attempt I_{3} to I_{2} as $I_{3}=\mathrm{e}-3 I_{2}$

Continue sequence in terms of In
Attempt I_{0} or I_{1}
Get 6 - 2e
(i) Area under graph $\left(=\int 1 / x^{2} d x, 1\right.$ to $\left.n+1\right)$
$<$ Sum of rectangles (from 1 to n)
Area of each rectangle $=$ Width x Height $=1 \times 1 / x^{2}$
(ii) Indication of new set of rectangles Similarly, area under graph from 1 to n $>$ sum of areas of rectangles from 2 to n Clear explanation of A.G.
(iii) Show complete integrations of RHS, using correct, different limits
Correct answer, using limits, to one integral
Add 1 to their second integral to get complete series
Clearly arrive at A.G.
M1
A1
(iv) Get one limit

B1 Quotable
Get both 1 and 2
B1 Quotable; limits only required

7
(i) Use correct definition of \cosh or $\sinh x$ Attempt to mult. their cosh/sinh Correctly mult. out and tidy Clearly arrive at A.G.
(ii) Get $\cosh (x-y)=1$

Get or imply $(x-y)=0$ to A.G.
(iii) Use $\cosh ^{2} x=9$ or $\sinh ^{2} x=8$

Attempt to solve $\cosh x=3$ (not -3)
or $\sinh x= \pm \sqrt{8}$ (allow $+\sqrt{8}$ or $-\sqrt{8}$ only)
Get at least one x solution correct
Get both solutions correct, x and y

8
(i) $x_{2}=0.1890$
$x_{3}=0.2087$
$x_{4}=0.2050$
$x_{5}=0.2057$
$x_{6}=0.2055$
$x_{7}\left(=x_{8}\right)=0.2056$ (to x_{7} minimum)
$\alpha=0.2056$
(ii) Attempt to diff. $\mathrm{f}(x)$

Use α to show $\mathrm{f}^{\prime}(\alpha) \neq 0$
(iii) $\delta_{3}=-0.0037$ (allow -0.004)
(iv) Develop from $\delta_{10}=\mathrm{f}^{\prime}(\alpha) \delta_{9}$ etc. to get δ_{i} or quote $\delta_{10}=\delta_{3} \mathrm{f}^{\prime}(\alpha)^{7}$
Use their δ_{i} and $\mathrm{f}^{\prime}(\alpha)$
Get 0.000000028

B1 Seen anywhere in (i)
M1
A1 $\sqrt{ }$
A1 Accept e^{x-y} and e^{y-x}

M1

A1
B1
M1 $x=\ln (3+\sqrt{ } 8)$ from formulae book or from basic cosh definition
A1
A1 $x, y=\ln (3 \pm 2 \sqrt{ } 2)$; AEEF
SR Attempt tanh $=\sinh /$ cosh \quad B1
Get $\tanh x= \pm \sqrt{8 / 3}(+$ or -) \quad M1
Get at least one sol. correct A1
Get both solutions correct A1
SR Use exponential definition B1
Get quadratic in e^{x} or $\mathrm{e}^{2 \mathrm{x}} \quad \mathrm{M} 1$
Solve for one correct $x \quad$ A1
Get both solutions, x and y A1
B1
B1 $\sqrt{ }$ From their x_{1} (or any other correct)
B1 $\sqrt{ }$ Get at least two others correct, all to a minimum of 4 d.p.

B1 cao; answer may be retrieved despite some errors

M1 $k /(2+x)^{3}$
A1 $\sqrt{ }$ Clearly seen, or explain $k /(2+x)^{3} \neq 0$ as $k \neq 0$; allow ± 0.1864
SR Translate $\mathrm{y}=1 / \mathrm{x}^{2}$ M1
State/show $\mathrm{y}=1 / \mathrm{x}^{2}$ has no TP A1
$B 1 \sqrt{ }$ Allow \pm, from their x_{4} and x_{3}

M1 Or any δ_{1} eg use $\delta_{9}=\mathrm{x}_{10}-\mathrm{x}_{9}$
M1
A1 Or answer that rounds to \pm 0.00000003

9 (i) Quote $x=a$
Attempt to divide out
Get $y=x-a$
(ii) Attempt at quad. in $\mathrm{x}(=0)$

Use ${ }^{b 2-} 4 a c \geq 0$ for real x
Get $y^{2}+4 a^{2} \geq 0$
State/show their quad. is always >0
(iii)

B1

M1 Allow M1 for $\mathrm{y}=\mathrm{x}$ here; allow
A1 $(x-a)+k /(x-a)$ seen or implied
A1 Must be equations
M1
M1 Allow >
A1
B1 Allow \geq
$B 1 \sqrt{ }$ Two asymptotes from (i) (need not be labelled)

B1 Both crossing points

B1 $\sqrt{ }$ Approaches - correct shape
SR Attempt diff. by quotient/product rule M1
Get quadratic in x for $\mathrm{d} y / \mathrm{d} x=0$ and note $b^{2}-4 a c<0$

A1
Consider horizontal asymptotes B1
Fully justify answer B1
physicsandmathstutor.com

